
Smart Home Assistant
In this project, you’ll make a “smart” personal assistant to
help out around some tasks around the house, such as
turning lights on and off, or turning fans on and off.

You’ll give your assistant a command in the same way you
might talk to a person, and see how well it responds to your
request.

What you’ll need to know:

 How to use the Python shell

 How to write Python scripts

Part 1: What can our assistant do?

Instead of using real light bulbs and appliances, we’re going to build a ​prototype ​that will
1)​ wait for a command, ​2)​ decide which task to perform, and ​3)​ tell you what it did.

 A ​prototype​ is a simpler version of your project that lets you test out an idea

1. Create a new python script, and save it as ​smart_home.py

2. Add the following code. Before running it, ​predict​ what you think it will do!

1
2
3
4
5
6
7
8
9
1
0

command = ​input​(​"Enter your command: "​)

if​ command == ​"Turn on the lights"​:
 ​print​(​"Ok, turning the lights on."​)

elif​ command == ​"Turn off the lights"​:
 ​print​(​"Ok, turning the lights off."​)

else​:
 ​print​(​"Sorry, I don’t understand!"​)

Can you guess what this ​algorithm
will do when you run it?

Try reading it aloud, line-by-line, and
discuss your predictions w/ your
partner.

What do you think the ​if​, ​elif​, and
else​ statements are for?

3. Run your script. In the ​shell​, you should see: ​Enter your command:

4. Type in a command such as “Turn on the lights” and press ​Enter​.

5. Keep trying different commands (you’ll need to run the script each time)

Part 2: Adding more conditions

Right now, our assistant can only control lights. What if we also want to control a fan?
We’ll need to program our assistant to handle more ​conditions​.

6. Add another condition​ ​to the if-statement (start after ​line 8​):

1
2
3
4
5
6
7
8

command = ​input​(​"Enter your command: "​)

if​ command == ​"Turn on the lights"​:
 ​print​(​"Ok, turning the lights on."​)

elif​ command == ​"Turn off the lights"​:
 ​print​(​"Ok, turning the lights off."​)

Tip: ​it’s ok to copy-and-paste!
Copy a line, paste it below,
and change whatever you
need.

9
10
11
12
13

elif​ command == ​"Turn on the fan"​:
 ​print​(​"Ok, turning the fan on."​)

elif​ command == ​"Turn off the fan"​:
 ​print​(​"Ok, turning the fan off."​)

 � Add new conditions here for

 ​“Turn on the fan”​ and

 ​“Turn off the fan”

14
15

else​:
 ​print​(​"Sorry, I don’t understand!"​)

7. Run the script and test it out! Make sure all 4 conditions work.

How smart is our assistant, really?

What happens when you say “​Turn the lights on​” instead of “​Turn on the lights”​?

8. Run the script, and enter both commands to see what happens:

 Reflect​: why do you think this happens? What might you do to fix it?

Part 3: How to train your robot

As you may have realized, there are ​many​ different
ways you could ask someone to turn on and off the
lights. Adding all the possible commands in our code
would take forever!

Next, we’ll try a better approach: teaching the
computer to recognize commands for itself.
This technology is called ​Machine Learning

Create a new project and add training data

1. Learn how to create a new project in the ​Machine Learning Reference Guide​.
Refer to the ​Adding training data​ and ​Recognizing text​ ​sections in the following steps.

2. Create a new project for ​recognizing text​, and add training data for each possible
outcome: ​lights_on ​, ​lights_off​, ​fan_on​, & ​fan_off ​.

3. Try to think of a bunch of the different ways you might tell someone to turn on the
lights. Be creative!

4. Click on ​Add example​ to add at least 6 to 8 example commands for each of your labels:

5. Click the ​Back to Project​ link, then click ​Learn & Test.

6. Scroll down to the bottom, and click “​Train new machine learning model”.
Wait for the training to complete (this might take a minute or two).

7. Once the training has completed, you will have a ​machine learning model.
Try typing some test commands in the text box below to test out your model!

A ​machine learning​ ​model​ is the result of training.
You can interact with a model it by giving it input (such as text, images, or
numbers), and it will give you some answer based on what it has learned.

Update your Python code

8. Highlight the ​API key​ text on your project page, and press ​Ctrl+C ​to copy it.

9. Go back to your Python script, and change your code to use the new ​model​:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import​ ml4k

API_KEY = ​"PASTE-API-KEY-HERE"
model = ml4k.Model(API_KEY)

command = ​input​(​"Enter your command: "​)
result = model.classify(command)
label = result[​"class_name"​]

if​ label == ​"lights_on"​:
 ​print​(​"Ok, turning the lights on."​)

elif​ label == ​"lights_off"​:
 ​print​(​"Ok, turning the lights off."​)

elif​ label == ​"fan_on"​:
 ​print​(​"Ok, turning the lights off."​)

elif​ label == ​"fan_off"​:
 ​print​(​"Ok, turning the lights off."​)

1. Add ​import ml4k​ ​at the top

2. Paste your ​API key​ using ​Ctrl+V

3. Use the ​classify​ function to
send the command to your model,
and store the result in a ​variable
called ​result​.

4. Create a variable called ​label​ and
set it to ​result[​"​class_name​"​]​.
This tells you which of the four
“buckets” the model chooses.

5. Replace ​command​ with ​label​, and
use the label names you created in
your training data.

6. Remove the ​else​ section. The
model will ​only​ return one of the
four options.

10. Run your script! Try entering commands that you ​didn’t ​enter during training.
How well did it do? If you got an unexpected answer, try adding more training data.

Advanced: How confident is our assistant?

What happens if you enter the command “Turn up the music!”? You’ll notice the model will
still give you one of the four options. Sometimes, the model will give you an answer, but it
won’t be very confident about it. We need a way to tell our user when we don’t know what
to do with a certain command.

Use ​result["confidence"]​ to get a number between ​0 ​ and ​100​, ​ and store it in a
variable​ called that will tell you how confident the model is in its answer. See if you can
add an ​if statement​ that ​first​ checks the confidence level and display an appropriate
response. For help, refer to the ​Variables​, ​Boolean Expressions​ and​ ​If Statements
chapters in your ​Python Reference Guide​.

Extra: Show an image instead of text!

1. Find some images online of a light bulb and fan on and off.
2. Add ​import webbrowser​ ​webbrowser at the top of your script
3. Instead of ​print()​, use​ ​webbrowser.open("url-goes-here")​ to show the image!

